

GREAT PEOPLE || GREAT SERVICE || GREAT RESULTS

Urban Camenzind

How Retro-reflectivity works

What is retro-reflectivity?

Retro- Specular Diffuse reflector reflector reflector

Retro-reflectivity:

Is a property of a surface, that allows a large portion of the light coming

from a point source, to be returned directly back to a point near its

origin.

(Federal Highway Administration 2009)

Why worry about retro-reflectivity?

Daylight

retro-reflectivity at work

At night we depend on retro-reflectivity for information.

retro-reflectivity at work

Contrast of new marking, merging with old marking Yellow road marking produces less retroreflective than white Yellow road marking has low contrast ratio

Retro-reflectivity and how it is measured

	ASTM E1709		
Illumination angle	-4°		
Observation angle	0.2°, 0.5°, 1°		

 $R_L = mcd/m^2/lux$

Retro-reflectivity and how it is measured

EN 1436 Standard R₁

night time retroreflectivity is measured with:

- 2.29° observation angle corresponds to the viewing distance of the driver of 30m
- **1.24°** illumination angle

The measured value is:

 $R_L = mcd/m^2/lux$

How does retro-reflectivity work on line marking?

For flat Lines Approximately 50-60% embedded into material for best retro reflectivity

Not deep enough \rightarrow no retro reflection

To deep \rightarrow retro reflection gets lost inside of the glass bead

Excess of glass beads A and C retro reflects the light best B and D are in the shadow of glass bead A and C no light will reach them \rightarrow no retro reflection

... the right amount of glass beads Distance A to B 6mm for 300 micron beads Distance A to B 21mm for 1200 micron beads

Water film \rightarrow causes specular reflection; line disappear

High bead-application

Correct bead-application

Over beading cost more and reduces $\rm R_L$

 R_L 1295

30 meter road-marking Illumination

Illumination under 1.24° from the right hand side Multi dots and structure markings are Ideal to drain the water of the line They produce higher R_L in the wet even with having less illuminated area than a flat marking Those markings work better with small or micro beads

ATP structure marking 500mm centre

Only illuminated areas can produce retro-reflectivity

ATP only marking 250mm centre

30 meter geometry road-markings Illumination

Paint & Type D beads

Type D & micro beads

Drain channel & micro beads

Structure marking intermix beads

Only illuminated areas can produce retro-reflectivity

IGREAT RESULTS

Retro-reflectivity on ATP

Height7mmIf line would be painted over 1m lengthWidth150mm $0.150m^2$ produces retro-reflectivityLength50mm $0.030m^2$ for theoretical ATP only 1/5 ofSpacing250mmarea

Actual shape of ATP Only first half of ATP can produce RL Most R_L is produced by specular reflectivity

0.015m² can produce R_L $1/_{10}$ of the area of a flat line

0.0075m² can produce R_L if ATP only $1/_{20}$ of the area of a flat line 0.0525m² can produce R_L if ATP and Baseline $1/_3$ of the area of a flat line

Low retro-reflectivity why?

- Measured to early after application (over-beaded, paint overspray)
- Application issues (gun blockage; to many beads)
- Low quality beads (black, un-round and crushed beads)
- Wrongly coated beads
- Paint runs down in to voids not enough paint left on top of chip
- Unsuitable material application (not embeaded properly, to viscose material, to thin paint application)
- Scouring of beads (glass to soft lots of gravel, sand on road)
- High traffic loads on Line marking (roads going uphill with lots of traffic crossover, overtaking and merging lanes, tight curves)

Incompatible material does not bind to baseline

Low retro-reflectivity

Wrongly coated beads Not deep enough

On ATP it is very important to chose the properly coated beads and the right bead size. Big beads do not work as part of retro reflectivity is produced by specular reflectivity. ATP material has High viscosity so beads have to be forced in to the material.

Big beads will only stick to top of material and fall out quickly under load

Beads which are still in paint contain over spray

Zwahlen's recommended minimum RL values

Minimum Poquirod P [mcd/m²/lux]

Venicie Speed						
		Without RRPMs		With RRPMs		
	3.65 s Preview Time/ Distance		2.0 s Preview Time/ distance			
60 km/h	16.6m/s	R _L 50	60.59m	R _L 30	33.20m	
90 km/h	25.0m/s	R _L 170	91.25m	R _L 35	50.00m	
105 km/h	29.1m/s	R _L 340	106.21m	R _L 50	58.20m	
120 km/h	33.3m/s	R _L 620	121.54m	R _L 70	66.60m	

Typical braking distance for 100km/h = 98m/122m wet

Vahiela Spaad

150

Zwahlen, H. T. and T. Schnell. *Pavement marking Visibility Research and Proposed Values for Minimum Required Pavement marking Retro Reflectivity.* Unpublished report, Department of Industrial and Systems Engineering, Ohio University Athens, Ohio. August, 1998

Requirements of R_L in different countries.

2.4.1 Testing of Retro Reflectivity (NZ NOC contract)

After 1 month but before 2 months after application, the marking shall be clearly visible for a forward distance of 150m, or as far forward as possible until obstructed by the road geometry if less than 150 m, when viewed from a vehicle at night (with lights on full beam) in the absence of overhead lighting.

Guesstimate produces low quality outcome

Performance Criteria (per TS45 Cl 6.1.1)

- a. Minimum Retroreflectivity between 10 and 20 days of wear:
- b. Minimum Retroreflectivity between 360 and 380 days of wear:
- c. Minimum Retroreflectivity at any time after 380 days of wear:

350mcd/lux/m² 300mcd/lux/m² 150mcd/lux/m²

What gets measured, gets managed Peter Tucker

Actual measuring performance based outcome

Why worry about retro-reflectivity?

90% of information is processed visually

Why worry about retro-reflectivity?

Visual performance in darkness drops to **5%**

What is the real efficiency of road markings

In 2007, Road Safety Marking Association (RSMA) published the report « White Lanes Save Lives » which provided a cost-effectiveness Analysis of new road markings in selected counties. Eg : Cheshire Country County decided to apply a wet-night visible marking on a section of the A556 highway which had recorded 16 personal injury accidents during the last three years at an estimated cost of 1'400'000 £. (3'270'000 NZD)

Status	Total accidents	Serious accidents	Minor accidents	Wet-dark accidents
Before Implementation	16	2	14	4
After Implementation	6	0	6	0

Cost of new Road marking : £ 20 000

(48.000,- NZD)

\$3'000'000.00 saving for a \$50'000.00 investment

Good value for Money

Wet night visible road marking

- Painted line covered by rain disappears
- Wet night road marking keeps retro-reflectivity going in rain

High quality road-marking can safe lives

Achieved through high Standards and quality control Measuring not guessing

Produced by Roaddata from following sources •FHW •3M

INFORMATION YOU CAN REAT PEOPLE || GREAT SERVICE || GREAT RESULTS

TRUST